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Abstract 

We show that such a magnetic dipole suspended at a height h above a conducting 

sheet experiences a lift force proportional to 1/h2. This represents an order of 

magnitude improvement over the 1/h4 lift obtained in the quasistatic limit. 
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Introduction 

There are several ways of achieving stable spatial confinement of a magnetic 

levitator [1-7]. One of them is to use eddy currents or induced currents [8,9]. 

Being dynamical, they naturally fall outside the limitations of Earnshaw’s 

theorem [10,11]. A significant result in this field has been demonstrated by 

Saslow [14]. He has used Maxwell’s method of retreating images to determine 

the electromagnetic fields and hence the lift force on an oscillating dipole 

suspended vertically above a metallic sheet. It is shown that when the oscillation 

frequency becomes higher than the inverse of the diffusion time constant of the 

metal, the sheet acts like a Type I superconductor in that it expels the magnetic 

field completely from inside it. In this regime, the metal sheet can be replaced by 

an image dipole, which exerts a lift force proportional to the inverse fourth power 

of the height of the dipole above the sheet. Since changing the position of the 

source automatically changes the position of the image, this arrangement does not 

have a lateral instability coming as ‘baggage’ with the vertical stability. Two 

other approaches to magnetic levitation can be found in References [15] and [16] 

– the former uses a rotating saddle trap while the latter uses hydrodynamic 

stabilization to counteract Earnshaw’s theorem. 

In the present Letter, we consider the situation of Reference [14] but in a different 

limit. In [14], the calculations are in the quasistatic limit, where the 1/c2 ∂E/∂t 

term in B  is neglected. However, it is a fact that the high-frequency response 

of dynamical systems is sometimes considerably different from the low-

frequency one – an example is the Kapitza pendulum [17] where stabilization of 

the inverted position occurs at high frequency alone. To this end, we explore here 

the effects of applying a very high oscillation frequency on the dipole. As we 

shall see later, rapid oscillation means that the wavelength of the emitted waves 

is smaller than the height at which the dipole is suspended – slow oscillation on 

the other hand denotes the quasistatic limit. We find that in the high-frequency 

limit, the lift force becomes more long-ranged, varying as the inverse square of 

the height as against the inverse fourth.  

In the process of calculation we also introduce a technique for obtaining 

electromagnetic radiation fields which we believe is new. This approach involves 

directly solving the wave equation for the electric and magnetic fields instead of 

first calculating the retarded potentials. The advantage of this procedure is that it 

can readily yield solutions for extended charge and current configurations, which 

are typically encountered in practice. Whereas the exact solution of radiation 



fields for point sources using retarded potentials is well-known [18], solving for 

extended sources is a different matter. Abbott and Griffiths [19] have calculated 

the fields outside a solenoid using an approximate retarded potential. A subtlety 

of the calculation has been highlighted by McDonald [20] who has first 

differentiated the retarded potential to find the fields and only then imposed the 

approximation. A perturbative approach to the problem has been adopted by Roy 

et. al. [21]. The method we propose here however cannot be found in any of these 

or in the standard texts [22-24] on electromagnetism. We will first show how this 

method can be used to obtain the electromagnetic fields inside and outside a 

current-carrying spherical shell of finite radius R. After presenting the general 

solution, we take the limit R→0 for further calculation i.e. we shrink the current 

source down to a point dipole. We note that in this limit the fields could also have 

been obtained from [18]. 

 

Calculation of the electromagnetic fields of a macroscopic dipole 

We consider a spherical shell of radius R centred at the origin which carries a 

surface current 0
ˆsin cosK tθ ω=K φ  where ω is high enough so that the shell 

radiates instead of generating a quasistatic field. We choose this configuration 

because it corresponds to a single angular harmonic of the wave equation. 

Moreover, it is well-known that in the absence of the time dependence, this 

current distribution generates outside the sphere a magnetic field entirely 

equivalent to that of a point dipole ˆmz  with m=4πK0R
3/3 placed at its centre. Note 

that at this stage we do not treat R to be vanishingly small and K0 correspondingly 

large. 

Maxwell’s equations for this configuration can be combined into the wave 

equation  
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where μ0ε0=1/c2. The electric field satisfies the homogeneous equation 

everywhere except at the surface of the shell; we expect that the shell will provide 

boundary conditions which match the internal and external solutions. Since the 

source term is entirely in φ̂  direction, the net E too will be in that direction, 

although the equation (1) itself will hold only for Cartesian components of E. In 

spherical polar coordinates r,θ,φ the homogeneous wave equation with the 

relevant temporal and angular dependences has the following solution set : 



 ( )     1 1, ( ), ( ) sin cos ,sin cos ,sinE t j kr y kr t tθ φ φ ω ω=r , (2) 

where E denotes any one Cartesian component of electric field, k=ω/c and every 

possible combination of functions separated by commas makes up a solution. 

Here the spherical Bessel functions are defined as 
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(choice of signs and normalization is to be noted). 

The boundary conditions on E and B at the shell are that E is continuous, the 

normal component of B is also continuous and the tangential component of B has 

a jump proportional to the surface current. E has two components, a cosωt and a 

sinωt both of which have the spatial dependences indicated in (2). Since the 

current is cosωt, the jump in B comes only from its cosωt component; since E 

depends on ∂B/∂t, the jump will come from the sinωt component of E. So we 

focus on this component first. 

Since j1(kr) is tractable at r=0 while y1(kr) is not, we try the ansatz  

 1,sin 1 1
ˆ( )sin sinA j kr tθ ω=E φ    , (4a) 

 ( )2,sin 2 1 2 1
ˆ( ) ( ) sin sinA j kr B y kr tθ ω= +E φ    , (4b) 

inside and outside the shell respectively. Here the subscripts 1 and 2 denote the 

electric fields inside and outside the shell while subscripts ‘sin’ and ‘cos’ refer to 

the temporal behaviour. Continuity of E at the shell r = R gives the equation 

 1 1 2 1 2 1( ) ( ) ( )A j kR A j kR B y kR= +    , (5) 

and we have one relation connecting A1, A2 and B2. 

Now we account for the jump in B. Its component tangent to the shell is Bθ; 

/ t = − E B  yields 
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where prime denotes differentiation with respect to kr. This implies that 
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Similarly calculating Bθ outside the shell, we can write the boundary condition  
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and we have a second relation between the three unknown constants.  

Continuity of the radial component of magnetic field fails to yield the third 

relation. For we have  
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and equating the two at r = R leads to the condition (5) again. 

We now bring the cosωt component of E into focus. Like (4), this must be having 

the form 

 1,cos 1 1
ˆ( )sin cosC j kr tθ ω=E φ    , (11a) 

 ( )2,cos 2 1 2 1
ˆ( ) ( ) sin cosC j kr D y kr tθ ω= +E φ    , (11b) 

inside and outside. E is continuous at the shell so  

 1 1 2 1 2 1( ) ( ) ( )C j kR C j kR D y kR= +    . (12) 

The cosωt component of E generates a sinωt component of B; since the current 

does not have this component, Bθ is continuous also. The boundary condition is 

the same as (9) with zero in place of μ0K0ω and we have 
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Finally, the boundary condition is imposed that there can only be outgoing waves 

outside the sphere. At large distances the dominant term is 1/r; at this order (4b) 

yields A2 coskr sinωt + B2 sinkr sinωt, while (11b) yields C2 coskr cosωt + 

D2 sinkr cosωt. To express them as trigonometric functions of kr−ωt we must have 

D2=−A2 and C2=B2. Before writing out the resulting system, we define F(kR) as 



1 1( ) / '( )j kR R kj kR+  and G(kR) as 1 1( ) / '( )y kR R ky kR+ , to achieve notational 

compactness. Then we have 

 1 2 2( ) ( ) ( ) 0f kR A f kR A g kR B− − =    , (14a) 

 1 2 2 0 0( ) ( ) ( )F kR A F kR A G kR B Kμ ω− − =    , (14b) 

 2 2 1( ) ( ) ( ) 0g kR A f kR B f kR C− + =    , (14c) 

 2 2 1( ) ( ) ( ) 0G kR A F kR B F kR C− + =    , (14d) 

 2 2C B=    , (14e) 

 2 2D A= −    . (14f) 

We can solve this linear system to determine the unknown constants and hence E 

and B everywhere. It is noteworthy that this approach yielded the exact solution 

for the macroscopic configuration and bypassed the retarded potential altogether. 

 

Calculation of the levitation force 

In this Section, to simplify the solution of (14) and achieve a better comparison 

with existing literature, we shrink the macroscopic dipole to a point dipole i.e. we 

take the limit K0→∞ and R→0 while keeping K0R0
3=3m/4π a constant. At really 

small kR, the asymptotic forms j1(kR) = −kR/3 and y1(kR) = 1/k2R2 are relevant, 

and (14) becomes 
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This system is solved to obtain B2=μ0mωk
2/4π and A2=0. The resulting solution 

agrees with what has been found in [18].  

We now use the above reckoning to obtain the force on the dipole suspended at a 

height h above the conducting sheet z=0. It is a well known fact that a time-

dependent electric field penetrates a conductor to a distance of the order of the 

skin depth, which varies as ω−1/2 [22]. So long as h exceeds the skin depth by 

more than an order of magnitude, we can treat the conductor to be a perfect flux-



expeller. In this case, we have the boundary condition that E and B are zero at 

z=0. We have E outside the dipole as  
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We expect that the condition of zero E at z=0 will be satisfied by an image 

configuration which replaces the flux-expeller with a dipole at (0,0,−h); the 

following Figure determines the sign of the image. The electric field far away 

from the dipole is given by (16). Considering the source and image and the point 

(x,y,0) on the plane, at any instant of time, the r and t parts of E are the same for 

both the dipoles. As for the sinθ component, we can see that θ for the source is 

π/2+β while θ for the image is π/2−β for some angle β between 0 and π/2.  

 

Figure 1 : Schematic diagram showing the source and image dipoles with respect 

to the sheet. 

 

Since sin(π/2+β) = sin(π/2−β) for 0 /2β π  , this factor is also identical for 

both dipoles. Thus, the image must be the negative of the source i.e. if the source 

dipole is ˆcosm tω z , the image is ˆcosm tω− z .  

To find the force on the source, we use the standard formula ( )m= F B . The 

source dipole is in the z-direction only. Further, due to the symmetry of the 

problem, we expect that the force itself will also be in z-direction only. Hence this 

formula reduces to F = m(∂Bz/∂z). Bz at the source point comes from both source 



and image – the source can’t be exerting a force on itself, so the entire 

contribution will be that of the image. Thus, we must find Bz at the point (0,0,h) 

on account of the image −m cosωt at (0,0,−h).  

Evidently, for the image point, ˆˆ =z r  and Bz=Br. Thus, we should use the formula 

(10b), after substituting the B2 we found later and replacing m by −m. This gives 
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Although (17) does not represent an outgoing wave, the sinωt component of Br 

will not generate a force with non-zero time average, hence we neglect it. For the 

configuration under study, θ=0; now replacing r by z gives 
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Its ∂/∂z is  
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For the force we want m (∂Bz/∂z) averaged over time – since m is also cosωt, the 

average evaluates to 1/2. Then we substitute z = 2h and get 
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which is our final expression. 

 

Discussion and conclusion 

We close with a brief discussion of our results. The force (20) contains three terms 

where decreasing powers of k are compensated by increasing powers of 1/h. 

When k is very small compared to 1/h, the dominant term is the third one. This is 

the result which Saslow [14] has obtained – it is eminently sensible since k→0 

means that the oscillation frequency of the dipole goes to zero i.e. we approach 

the quasistatic limit. This is the regime in which Saslow’s calculation has been 

carried out. On the other hand, if k is large compared to 1/h, the dominant term in 

the force (20) is the first one. This force is positive i.e. a lift force when cos2kh is 

negative. It has a much longer-ranged dependence on h than the force in the 

quasistatic case. Large k corresponds to high frequency of oscillation of the 



dipole. Here, the comparison scale is 1/h. If h equals 1 cm then large k implies 

waves of wavelength 1 mm or smaller i.e. k greater than or equal to approximately 

150 m−1. This corresponds to ω greater than or equal to approximately 4.5x1010 

s−1. These frequencies are smaller than the inverse of the time constants involved 

in the dynamics of electrons in the metal (10−14 s) [21] so the assumption of the 

metallic sheet as a flux expeller does not break down. At the frequencies involved, 

the skin depth in the metal is 2/(μ0σω)1/2 which, for copper, evaluates to 

approximately 1 micrometre. So the step of replacing the metal by an ideal flux-

expeller is valid.  

The long-ranged dependence of the force on r opens up interesting practical 

possibilities for levitating objects magnetically. In slow limit, the 1/h4 

dependence means that dipoles located somewhat far away from each other do 

not affect each other at all. With 1/h2 however, it should be possible to 

manufacture setups where dipoles interact with further away ones to augment the 

lift and confinement forces. We also note that the ω involved will have to be such 

that the typical wavelength of the waves is of the order of the gap between the 

dipole and the sheet, i.e. about 1 mm. This occurs at microwave frequencies. We 

leave the design and analysis of magnetic levitators based on this principle to 

future study. 
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