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Abstract

We show that such a magnetic dipole suspended at a height h above a conducting
sheet experiences a lift force proportional to 1/h?. This represents an order of
magnitude improvement over the 1/h* lift obtained in the quasistatic limit.
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Introduction

There are several ways of achieving stable spatial confinement of a magnetic
levitator [1-7]. One of them is to use eddy currents or induced currents [8,9].
Being dynamical, they naturally fall outside the limitations of Earnshaw’s
theorem [10,11]. A significant result in this field has been demonstrated by
Saslow [14]. He has used Maxwell’s method of retreating images to determine
the electromagnetic fields and hence the lift force on an oscillating dipole
suspended vertically above a metallic sheet. It is shown that when the oscillation
frequency becomes higher than the inverse of the diffusion time constant of the
metal, the sheet acts like a Type | superconductor in that it expels the magnetic
field completely from inside it. In this regime, the metal sheet can be replaced by
an image dipole, which exerts a lift force proportional to the inverse fourth power
of the height of the dipole above the sheet. Since changing the position of the
source automatically changes the position of the image, this arrangement does not
have a lateral instability coming as ‘baggage’ with the vertical stability. Two
other approaches to magnetic levitation can be found in References [15] and [16]
— the former uses a rotating saddle trap while the latter uses hydrodynamic
stabilization to counteract Earnshaw’s theorem.

In the present Letter, we consider the situation of Reference [14] but in a different
limit. In [14], the calculations are in the quasistatic limit, where the 1/c? oE/ot
termin VxB is neglected. However, it is a fact that the high-frequency response
of dynamical systems is sometimes considerably different from the low-
frequency one — an example is the Kapitza pendulum [17] where stabilization of
the inverted position occurs at high frequency alone. To this end, we explore here
the effects of applying a very high oscillation frequency on the dipole. As we
shall see later, rapid oscillation means that the wavelength of the emitted waves
Is smaller than the height at which the dipole is suspended — slow oscillation on
the other hand denotes the quasistatic limit. We find that in the high-frequency
limit, the lift force becomes more long-ranged, varying as the inverse square of
the height as against the inverse fourth.

In the process of calculation we also introduce a technique for obtaining
electromagnetic radiation fields which we believe is new. This approach involves
directly solving the wave equation for the electric and magnetic fields instead of
first calculating the retarded potentials. The advantage of this procedure is that it
can readily yield solutions for extended charge and current configurations, which
are typically encountered in practice. Whereas the exact solution of radiation



fields for point sources using retarded potentials is well-known [18], solving for
extended sources is a different matter. Abbott and Griffiths [19] have calculated
the fields outside a solenoid using an approximate retarded potential. A subtlety
of the calculation has been highlighted by McDonald [20] who has first
differentiated the retarded potential to find the fields and only then imposed the
approximation. A perturbative approach to the problem has been adopted by Roy
et. al. [21]. The method we propose here however cannot be found in any of these
or in the standard texts [22-24] on electromagnetism. We will first show how this
method can be used to obtain the electromagnetic fields inside and outside a
current-carrying spherical shell of finite radius R. After presenting the general
solution, we take the limit R—>0 for further calculation i.e. we shrink the current
source down to a point dipole. We note that in this limit the fields could also have
been obtained from [18].

Calculation of the electromagnetic fields of a macroscopic dipole

We consider a spherical shell of radius R centred at the origin which carries a
surface current K = K, sinfcoswt@ where o is high enough so that the shell

radiates instead of generating a quasistatic field. We choose this configuration
because it corresponds to a single angular harmonic of the wave equation.
Moreover, it is well-known that in the absence of the time dependence, this
current distribution generates outside the sphere a magnetic field entirely
equivalent to that of a point dipole m2 with m=4zK,R3/3 placed at its centre. Note
that at this stage we do not treat R to be vanishingly small and K, correspondingly
large.

Maxwell’s equations for this configuration can be combined into the wave
equation
1 O°E

C_zyzﬂowKOS(r—R)sinﬁsina)t(f) : (1)
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where upeo=1/c?. The electric field satisfies the homogeneous equation
everywhere except at the surface of the shell; we expect that the shell will provide
boundary conditions which match the internal and external solutions. Since the

source term is entirely in @ direction, the net E too will be in that direction,
although the equation (1) itself will hold only for Cartesian components of E. In
spherical polar coordinates r,d,p the homogeneous wave equation with the
relevant temporal and angular dependences has the following solution set :



E(r,t)={j,(kr), » (kr)}sin0{cosp,sinp}{coswt,sin vt} (2)
where E denotes any one Cartesian component of electric field, k=w/c and every

possible combination of functions separated by commas makes up a solution.
Here the spherical Bessel functions are defined as

coskr sinkr

jl (kr) = k}" - k2]/'2 y (38.)
sinkr coskr
yy(kr) = pransr (3b)

(choice of signs and normalization is to be noted).

The boundary conditions on E and B at the shell are that E is continuous, the
normal component of B is also continuous and the tangential component of B has
a jump proportional to the surface current. E has two components, a coswz and a
sinwt both of which have the spatial dependences indicated in (2). Since the
current is coswt, the jump in B comes only from its coswt component; since E
depends on 0B/at, the jump will come from the sinwt component of E. So we
focus on this component first.

Since jy(kr) is tractable at r=0 while y;(kr) is not, we try the ansatz
El,sin
E, gn = (4o (kr) + B,y (kr))sinOsinwt§ (4b)

inside and outside the shell respectively. Here the subscripts 1 and 2 denote the

electric fields inside and outside the shell while subscripts ‘sin’ and ‘cos’ refer to
the temporal behaviour. Continuity of E at the shell r =R gives the equation

A,7,(kR) = 4, j,(kR) + B,y (kR) (5)
and we have one relation connecting A;, A; and B,.

= A, j,(kr)sinfsinwt® (4a)

Now we account for the jump in B. Its component tangent to the shell is By;
VxE=-0B/ ot yields

_% =4, (]I(kr) + kjy '(/er)jsin@sin wt (6)
r
where prime denotes differentiation with respect to kr. This implies that
B, = —é(m + kf '(/er)jsiné’cos ot . (7)
w r

Similarly calculating By outside the shell, we can write the boundary condition



as

A 2Ry |-, AR g um)

, (9)
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and we have a second relation between the three unknown constants.

Continuity of the radial component of magnetic field fails to yield the third
relation. For we have

B}/l — 2141.].1 (ki")

cosfcoswt (10a)
wr
B, = (ZAZJ 1(k) + 2B,y 1(k”))cosé’cos wt (10b)
wr wr

and equating the two at r =R leads to the condition (5) again.

We now bring the coswt component of E into focus. Like (4), this must be having
the form

Ecos =Crji(kr)sinfcoswt@ (11a)
E; cos =(Ca 7y (kr) + Dyy (kr))sinfcoswtp (11b)

inside and outside. E is continuous at the shell so
Cj1(kR) =C, j1(kR) + D, y,(kR) . (12)

The coswt component of E generates a sinwt component of B; since the current
does not have this component, By is continuous also. The boundary condition is
the same as (9) with zero in place of 1 Kew and we have

Cl(]I(R/fR) +kj1 v(kR)j_Cz(]l(zR) +k]1'(kR)j
-D, (y 1 (}’;R) + &y, '(kR)j -0

Finally, the boundary condition is imposed that there can only be outgoing waves
outside the sphere. At large distances the dominant term is 1/r; at this order (4b)
yields A, coskr sinwt + B; sinkr sinwt, while (11b) yields C, coskr coswt +
D, sinkr coswt. To express them as trigonometric functions of kr—w¢ we must have
D,=—A; and C,=B,. Before writing out the resulting system, we define F(kR) as

(13)




71(BR)/ R+ kj,'(kR) and G(kR) as y,(kR)/ R+ ky,'(kR), to achieve notational
compactness. Then we have

F(ER) A4, - f(kR) 4, - g(kR)B, =0, (142)
F(kR)A, — F(kR)A, —G(kR)B, = yyK, 0 (14b)
8(kR) A, — f(kR)B, + f(kR)C; =0 , (14c)
G(kR)A, — F(kR)B, + F(kR)C; =0 (14d)
C,=B, , (14e)

D,=-4, . (14f)

We can solve this linear system to determine the unknown constants and hence E
and B everywhere. It is noteworthy that this approach yielded the exact solution
for the macroscopic configuration and bypassed the retarded potential altogether.

Calculation of the levitation force

In this Section, to simplify the solution of (14) and achieve a better comparison
with existing literature, we shrink the macroscopic dipole to a point dipole i.e. we
take the limit Koo and R=>0 while keeping KoRo*=3m/4x a constant. At really
small kR, the asymptotic forms ji(kR) = —kR/3 and yi(kR) = 1/k?R? are relevant,
and (14) becomes

k k 1

—EA1 +§A2 o B,=0 , (15a)
2k 2k 1 oM
371 372 BRI 4zR3 (15b)
1 kR ER
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1 2k 2k
2R 4 55 +?C1 =0 . (15d)

This system is solved to obtain B,=uomwk?/4m and A,=0. The resulting solution
agrees with what has been found in [18].

We now use the above reckoning to obtain the force on the dipole suspended at a
height h above the conducting sheet z=0. It is a well known fact that a time-
dependent electric field penetrates a conductor to a distance of the order of the
skin depth, which varies as Y2 [22]. So long as h exceeds the skin depth by
more than an order of magnitude, we can treat the conductor to be a perfect flux-



expeller. In this case, we have the boundary condition that E and B are zero at
z=0. We have E outside the dipole as

E_ pomok’ ( cos(kr—ot) sin(kr —ot)
C 4x kr k22

jsin 0 . (16)

We expect that the condition of zero E at z=0 will be satisfied by an image
configuration which replaces the flux-expeller with a dipole at (0,0,-h); the
following Figure determines the sign of the image. The electric field far away
from the dipole is given by (16). Considering the source and image and the point
(x,y,0) on the plane, at any instant of time, the r and t parts of E are the same for
both the dipoles. As for the sind component, we can see that 6 for the source is
n/2+p while 0 for the image is 7/2—f for some angle S between 0 and #/2.

Source ""**-\I9O+B

9|
90-B
z—0 = &
90-B
&
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Figure 1 : Schematic diagram showing the source and image dipoles with respect
to the sheet.

Since sin(z/2+p) = sin(z/2—p) for 0< <z /2, this factor is also identical for

both dipoles. Thus, the image must be the negative of the source i.e. if the source
dipole is mcoswtz , the image is —mcoswtZ .

To find the force on the source, we use the standard formula F = (m-V)B. The

source dipole is in the z-direction only. Further, due to the symmetry of the
problem, we expect that the force itself will also be in z-direction only. Hence this
formula reduces to F =m(6B,/0z). B, at the source point comes from both source



and image — the source can’t be exerting a force on itself, so the entire
contribution will be that of the image. Thus, we must find B; at the point (0,0,h)
on account of the image —m coswt at (0,0,—h).

Evidently, for the image point, Z = and B,=B,. Thus, we should use the formula
(10b), after substituting the B, we found later and replacing m by —m. This gives

B - _/[2()77;1 (/esuzl kr Cos3kr)COSQCOS of (17)

r r
Although (17) does not represent an outgoing wave, the sinwt component of B,
will not generate a force with non-zero time average, hence we neglect it. For the
configuration under study, #=0; now replacing r by z gives

B, =- Lo ( /es1r21 kz N cos3/ez jcos of (18)
27 z z
Its 0/0z is
OB,  ugm( k*coskz 3ksinkz 3coskz
- — — s~ |coswt (19)
0z 27 z z z

For the force we want m (6Bz/0z) averaged over time — since m is also coswt, the
average evaluates to 1/2. Then we substitute z=2h and get

 4rx an? 8h’ 164* (20)

which is our final expression.

oM [kz cos2kh 3ksin2kh 3cos,2/ehj

Discussion and conclusion

We close with a brief discussion of our results. The force (20) contains three terms
where decreasing powers of k are compensated by increasing powers of 1/h.
When k is very small compared to 1/h, the dominant term is the third one. This is
the result which Saslow [14] has obtained — it is eminently sensible since k=0
means that the oscillation frequency of the dipole goes to zero i.e. we approach
the quasistatic limit. This is the regime in which Saslow’s calculation has been
carried out. On the other hand, if k is large compared to 1/h, the dominant term in
the force (20) is the first one. This force is positive i.e. a lift force when cos2kh is
negative. It has a much longer-ranged dependence on h than the force in the
quasistatic case. Large k corresponds to high frequency of oscillation of the



dipole. Here, the comparison scale is 1/h. If h equals 1 cm then large k implies
waves of wavelength 1 mm or smaller i.e. k greater than or equal to approximately
150 m~2. This corresponds to o greater than or equal to approximately 4.5x10%°
s71. These frequencies are smaller than the inverse of the time constants involved
in the dynamics of electrons in the metal (1074 s) [21] so the assumption of the
metallic sheet as a flux expeller does not break down. At the frequencies involved,
the skin depth in the metal is 2/(uoow)?> which, for copper, evaluates to
approximately 1 micrometre. So the step of replacing the metal by an ideal flux-
expeller is valid.

The long-ranged dependence of the force on r opens up interesting practical
possibilities for levitating objects magnetically. In slow limit, the 1/h*
dependence means that dipoles located somewhat far away from each other do
not affect each other at all. With 1/h? however, it should be possible to
manufacture setups where dipoles interact with further away ones to augment the
lift and confinement forces. We also note that the w involved will have to be such
that the typical wavelength of the waves is of the order of the gap between the
dipole and the sheet, i.e. about 1 mm. This occurs at microwave frequencies. We
leave the design and analysis of magnetic levitators based on this principle to
future study.
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